
Journal of Sound and <ibration (1999) 227(4), 807}832
Article No. jsvi.1999.2389, available online at http://www.idealibrary.com on

00
BROADBAND DISTURBANCE ATTENUATION OVER
AN ENTIRE BEAM

S. O. REZA MOHEIMANI*

Department of Electrical and Computer Engineering, ;niversity of Newcastle,
Callaghan, NS= 2308, Australia

AND

I. R. PETERSEN AND H. R. POTA

School of Electrical Engineering, Australian Defence Force Academy,
Canberra, 2600, Australia

(Received 29 April 1997, and in ,nal form 12 May 1999)

This paper considers a problem of disturbance attenuation for a pinned}pinned
#exible beam. The beam is modelled as a distributed parameter system and
a procedure is developed to solve the corresponding disturbance attenuation
problem for such a distributed parameter system. A controller is designed in a way
that minimizes the e!ect of disturbances over the entire beam. The controller
design approach of this paper is applicable to a large number of active noise and
vibration control problems.
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1. INTRODUCTION

The acoustic noise spectrum covers a range of 50 Hz to 20 kHz. In the majority of
noise control problems disturbances above 1000 Hz can generally be reduced by
means of passive techniques. However, successful reduction of disturbances in the
50}1000 Hz range demands more sophisticated methods. This has motivated much
research in the "eld of active control of noise and vibrations in recent years [1].

The problem of active control of a vibrating "nite beam is of importance since it
captures many aspects of the practical problems in #exible structure vibrations and
control. As an example, in reference [2] an aircraft wing is modelled as a cantilever
beam to study the #utter modes excited by a constant velocity air#ow.

The control problem considered in this paper is shown in Figure 1. The beam is
hinged at both ends, x

1
is the location of a disturbance input, x

2
is a point at which

the disturbance is to be minimized and x
3

is the location of a control input.
In active noise and vibration control problems, the nature of the disturbance is of

particular importance. In a number of industrial applications, a tonal disturbance
may consist of a number of tones (or even a single tone). For such tonal
disturbances, a number of algorithms have already been developed, some of which
22-460X/99/440807#26 $30.00/0 ( 1999 Academic Press



Figure 1. Typical implementation of feed-forward control.
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rely on feedforward control techniques; e.g., see references [3, 1] and references
therein. These feedforward controllers invert the system dynamics. In acoustic
systems, as in the distributed parameter systems, there is an inherent time delay
between the disturbance and the output. This implies that a feedforward controller
for distributed parameter systems has to anticipate the disturbance and apply
a corrective control action. For an arbitrary disturbance, this results in a
non-causal controller but for a tonal (periodic) disturbance the prediction of
the disturbance ahead of time is easy and hence tonal disturbances pose little
theoretical problems in the design of feedforward controllers. However, when the
disturbance consists of broadband noise, causality becomes a major issue and
the majority of these techniques fail to perform satisfactorily [4].

Let the #exible structure transfer function between the force at location a and
displacement at location b be given by

G
ab

(s)"
n
ab

(s)
d (s)

, (1)

where d(s) is the common denominator of all the transfer functions and n
ab

(s) are
the numerators whose nature depends on the particular input and output locations.
The output at location 2 due to both the controlled input at 3 and the disturbance
input at 1 is:

y'
2
(s)"

n
12

(s)
d(s)

= (s)#
n
32

(s)
d (s)

K(s)=(s) , (2)

where K(s) is the controller transfer function and = (s) is the disturbance point
force, as shown in Figure 1. Control design consists in selecting a suitable K(s) for
an acceptable response y'

2
(s). One choice is to choose the controller such that

min
∀ stableK(s )

y'
2
(s)]y'

2
(!s) .

For some systems it is possible to force the response y
2
(t) ,0, ∀t [3] by

choosing the controller K(s)"!n
12

(s)/n
32

(s). But when n
32

(s) has roots in the
rhp, this controller can only work for tonal disturbances.

In reference [5], a feedforward controller design methodology is developed
which extends the above approach [3] to the broadband disturbances. The control



Figure 2. The general set up for H
=

control problems.
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algorithm allows for arbitrary placement of the poles of the transfer functions
between the disturbance and the response at any point along the beam. Let the
controller be given by K(s)"a(s)/b(s), and the control algorithm selects these two
polynomials a(s) and b(s) such that

y'
2
(s)"

n
12

(s)b (s)#n
32

(s)a(s)
d (s)b (s)

= (s)"
nJ (s)d(s)
d(s)b(s)

= (s) .

It can be seen that the controlled system characteristic polynomial is b(s). In
a way this controller design procedure &cancels' the uncontrolled system poles using
feedforward control.

Assuming that the disturbance is a wide-band noise with "nite signal energy, the
feed-forward control problem depicted in Figure 1 can be cast into a control
framework and hence the H

=
optimization methods can be used to design a

controller. Indeed, the main objective is to minimize the H
=

norm of the transfer
function from the disturbance w to the displacements at x

2
. Aside from allowing for

wide-band disturbances, a major advantage of the H
=

control is that it allows for
controllers to be designed in a way which is robust to model uncertainties.

To de"ne the so-called &&standard H
=

control problem'', consider the system of
Figure 2. Suppose that the plant has two inputs and two outputs and that the
transfer function of the plant is R (s). The system can be described by

C
z

yD"C
R
11

R
12

R
21

R
22
D C

w

u D .

Here, u is the control input, w is the disturbance input, y is the measured output and
z is the to-be-controlled noise output. The plant can be represented in a state-space
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form as

xR (t)"Ax(t)#B
1
w(t)#B

2
u(t),

z(t)"C
1
x (t)#D

12
u(t) ,

y(t)"C
2
x (t)#D

21
w(t) . (1.3)

The controller K takes as an input y and produces the output u. The problem is
to "nd a controller K which stabilizes the plant R such that the in#uence of the
disturbance w on the to-be-controlled output z is minimized in an H

=
-norm sense.

That is, if we denote the closed loop transfer function from w to z as R
K
(s) , then

R
K
(s) must be stable and the following condition holds:

ER
K
(s)E

=
"sup

w3R

pmax[RK
( ju)](c ,

where pmax [W] denotes the maximum singular value of the matrix W. The
parameter c is called the disturbance attenuation factor.

The H
=

controller design approach is indeed a worst-case design approach. For,
if we assume that ; is the set of all controllers K which stabilize the system R, then
it can be shown that the real objective is to "nd a controller in; which achieves the
following condition:

inf
K|U

sup
w ( ) )3L

2
(0,R)

Ez(t)E2
2

Ew(t)E2
2

(c2 ,

where L
2
[0, R] denotes the Hilbert space of square integrable vector valued

functions de"ned on [0, R] and Ez(t)E2
2
":=

0
z (t)@z(t) dt.

The H
=

optimal control problem has been subject of extensive research ever
since Zames published his famous paper in 1981 [6]. In this paper, Zames
motivated the H

=
control problem by considering the sensitivity of a feedback

control system. Following his work many authors attempted to solve the problem
using frequency-domain techniques (see reference [7]).

The frequency domain approach does give a solution to the H
=

control problem.
However, it was later found that a more straightforward solution could be found in
a state-space setting. Indeed, [8] showed that the problem of H

=
control via state

feedback can be solved by solving a Riccati equation. Later, Doyle et al. [9] showed
that the output feedback H

=
optimal control problem can be solved via solving

two algebraic Riccati equations. The connections with dynamic games have also
been well understood [10].

The large number of research papers in this "eld following the work of Zames is
due to the fact that many interesting problems can be formulated in an H

=
-design

framework (see for example [11]). A complete treatment of the H
=

optimal control
problem may be found in references [12, 10].

An important class of systems for which H
=

control problems can be considered
are the so-called distributed parameter systems. These systems are important since
many real-world systems can be modelled as distributed parameter systems. The
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H
=

control theory for such systems is currently under development. For example,
reference [13] addresses such problem for a class of distributed parameter systems,
the so-called Pritchard}Salamon systems.

However, although many systems can be modelled as distributed parameter
systems, in most practical control problems, it is useful to approximate the system
by another "nite dimensional system. This is specially important if H

=
control is to

be used since it typically leads to a controller which has the same order as the state
dimension of the model.

In this paper, we consider an approximate model of the pinned}pinned beam
shown in Figure 1; see also reference [14]. The model is assumed to have a "nite
number of states. However, since the objective is to minimize the e!ect of the
disturbance over the entire beam, we allow the system to have an output of in"nite
dimension. To be more precise, in this system, the disturbance and control inputs as
well as the state vector and the measurements are "nite-dimensional. However, the
error output is an in"nite-dimensional quantity. We solve this disturbance atten-
uation problem and apply our results to the pinned-pinned beam of Figure 1.

The rest of the paper is as follows. In Section 2, we present a dynamic model of
the beam. The model consists of an in"nite number of terms. However, for our
purposes, we only consider the "rst six modes. Section 3 contains a standard
H

=
controller design for the beam. It is shown that a better disturbance

attenuation may result by increasing the number of output points along the beam.
In Section 4, we consider a problem of H

=
control for a class of distributed

parameter systems where only the output noise vector is allowed to be of in"nite
dimension. We give a solution to this problem in terms of two algebraic Riccati
equations of the game type. We also show that this problem is equivalent to the
H

=
control problem for a "nite-dimensional plant with a "nite number of error

outputs. In section 5, we apply our results to the beam problem assuming our
in"nite-dimensional model for the beam.

2. DYNAMIC MODEL OF THE BEAM

Consider a #exible beam as shown in Figure 1. Here, y(x, t) denotes the elastic
deformation of the beam as measured from the rest position. The elastic de#ection
y(x, t) is governed by the following partial di!erential equation:

L2

Lx2 CEI
L2y(x, t)

Lx2 D#oA
L2y(x, t)

Lt2
"w(x, t) , (2.1)

where E, I, A, w(x, t) and o represent respectively the Young's modulus, moment of
inertia, cross-section area, external force per unit length, and the linear mass density
of the beam. The di!erential equation (2.1) is the classical Bernoulli}Euler beam
equation. Pinned}Pinned beam boundary conditions are

y (0, t)"0, EI
L2y(0, t)

Lx2
"0, y(l, t)"0, and EI

L2y(l, t)
Lx2

"0 . (2.2)
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A dynamic model of the beam may be derived using the assumed modes
modelling approach of Meirovitch [14]. First, the function y (x, t) is expanded as an
in"nite series in the form [15]

y(x, t)"
=
+
i/1

q
i
(t)/

i
(x), (2.3)

where /
i
(x) are the eigenfunctions satisfying the ordinary di!erential equations,

resulting from the substitution of equation (2.3) into equations (2.1) and (2.2). The
eigenfunctions also are chosen to be orthogonal according to the condition
:l
0
/

i
(x)/

j
(x)oAdx"d

ij
, where d

ij
is the Kronecker delta function. Now if the

system input is a point force applied at position x
a

and the output is the
displacement measured at position x

b
, then the transfer function [16] between

applied force w and the ith modal response q
i
(t) is given by

q'
i
(s)

= (s)
"

/
i
(x

a
)

(s2#u2
i
)
. (2.4)

Then after combination of equation (2.4) with equation (2.3) yields displacement
at position b given by

y' (x
b
, s)

= (s)
"

=
+
i/1

/
i
(x

a
)/

i
(x

b
)

(s2#u2
i
)

. (2.5)

For the pinned}pinned beam system in Figure 1 the mode functions are given by
[14]

/
n
(x)"S

2
oAl

sin A
nnx

l B , (2.6)

and the corresponding natural frequencies are u
n
"(nn/l)2JEI/oA .

In this paper, we consider the beam described in reference [5]. The parameters
are as follows: l"beam length"0)38 m; x

1
"0)038 m; x

2
"0)171 m; x

3
"0)247

m; oA"0)6265 kg/m; EI"5)329 Nm2.

We also assume a damping ratio of m"0)01. Figure 3 shows the three dimensional
plot of the disturbance response of the uncontrolled beam. Notice that in Figure 3,
j represents the distance, i.e., j"x. This notation is adopted so that in the
following sections, the state vector is not mixed with the distance.

3. THE STANDARD H
=

CONTROLLER DESIGN

In this section, we design anH
=

controller for the pinned}pinned beam of Figure
1. The block diagram corresponding to this H

=
control problem is shown in Figure

4. In this "gure, w and u correspond to w and u in Figure 1, while z is the
displacement in position 2 along the beam. The controller K(s) is to be designed in
a way to minimize the H

=
norm of the transfer function from the disturbance w to

the displacement at position 2, z.



Figure 3. Three-dimensional disturbance response of the uncontrolled beam.

Figure 4. A block diagram representation of the beam and controller.
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A state-space realization of this system is as follows:

xR (t)"Ax(t)#B
1
w(t)#B

2
u (t)

z(t)"Cx(t) ,

y(t)"w(t) (3.1)
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where

A"C
0 1 0 0

!u2
1

!2mu
1

0 0

}

0 0 0 1

0 0 !u2
n

!2mu
n
D ,

B
1
"[0 /

1
(x

1
)/

1
(x

2
)2 0 /

n
(x

1
)/

n
(x

2
)]@

B
2
"[0 /

1
(x

3
)/

1
(x

2
)2 0 /

n
(x

3
)/

n
(x

2
)]@

C"[1 02 1 0]

x"[q
1

qR
12

q
n

qR
n
]@ .

In the above model, only the "rst n modes of the beam are taken into account.
A major problem in designing a H

=
controller for system (3.1) is that such

a design will result in a controller with an in"nitely large gain. Such a problem is
referred to as a singular H

=
control problem in the literature and is due to the fact

that there is no direct feed through term from the control signal to the noise output
(i.e., D

12
"0). Therefore optimization of the cost function EzE

2
/EwE

2
may result in

a controller with an in"nitely large gain since there is no weighting on u in the cost
function. To overcome this di$culty, we add a "ctitious noise output to the system
such that the new system is de"ned by

xR (t)"Ax(t)#B
1
w(t)#B

2
u (t) ,

z(t)"C
C

0 D x(t)#C
0

e D u(t),

y(t)"w(t) .

Here, e is a parameter chosen by the designer. In this new system, the matrix D
12

is
no longer zero, and hence a practical H

=
controller may be designed for this

system. Moreover, the smaller the e, the better the new system approximates
the original system. However, care must be taken in choosing e. For, if a very
small e is chosen, a very large gain controller will be obtained which may cause
implementation di$culties. This is due to the nature of the singular H

=
control

problem. Indeed, if eP0, the controller gain will approach in"nity. Here, we choose
e"10~5.

Our H
=

design results in a controller with disturbance attenuation level of
8]10~5. Figure 5 shows the disturbance response of the controlled beam as
a function of the beam length, Figure 6 shows the H

=
norm of the closed-loop

system as a function of the beam length, and "nally, Figure 7 shows the Bode plot of
the controller.

So far, we have designed a controller which minimizes the H
=

norm of the
transfer function from the disturbance input to a particular point along the beam.



Figure 5. The three-dimensional frequency response of the controlled beam.

Figure 6. The H
=

norm of the disturbance to various locations along the beam.
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Figure 7. Bode plot of the H
=

controller.
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This controller does not guarantee noise reduction at other locations along the
beam. Indeed, as Figure 6 shows, the H

=
norm increases considerably as we move

from x
2
in any direction. One approach to attenuating the disturbance more evenly

along the beam is to increase the number of error outputs. Therefore, we will have
to design a controller for a single input, multiple output system. To illustrate this
approach, we assume that

x
2
"[0)095 0)171 0)285]@.

The system can be described in state-space form as

xR (t)"C
A 0

0 AD x (t)#C
B

0 Dw(t)#C
0

BD u (t),

z(t)"[C
1

C
2
] x (t),

y(t)"w (t),

where A is as above and

C
1
"C

/
1
(x

1
)/

1
(x

2
(1)) 0 2 /

n
(x

1
)/

n
(x

2
(1)) 0

/
1
(x

1
) /

1
(x

2
(2)) 0 2 /

n
(x

1
)/

n
(x

2
(2)) 0

/
1
(x

1
)/

1
(x

2
(3)) 0 2 /

n
(x

1
)/

n
(x

2
(3)) 0 D ,



Figure 8. The three-dimensional disturbance response of the beam.
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C
2
"C

/
1
(x

3
)/

1
(x

2
(1)) 0 2 /

n
(x

3
)/

n
(x

2
(1)) 0

/
1
(x

3
)/

1
(x

2
(2)) 0 2 /

n
(x

3
)/

n
(x

2
(2)) 0

/
1
(x

3
)/

1
(x

2
(3)) 0 2 /

n
(x

3
)/

n
(x

2
(3)) 0 D ,

B"[0 1 2 0 1]@.

Note that the state of this new system is twice as large as that of equation (3.1). The
reason is that here, the C matrix has more than one row, which results in a minimal
system. However, such a state-space model for system (3.1) would result in a
non-minimal system which would be reducible to equation (3.1).

As before, we face a singular H
=

control problem. To solve this problem, we add
an extra noise output as follows:

xR (t)"C
A 0

0 AD x (t)#C
B

0 Dw(t)#C
0

BD u (t) ,

z(t)"C
C

1
C

2
0 0 D x (t)#C

0

e D u(t) ,

y(t)"w(t) . (3.2)

We assume that e"10~5 and design a standard H
=

controller with c"8]10~5.
Figure 8 shows the three-dimensional disturbance response of the beam as a
function of the beam position and Figure 9 shows the corresponding H

=
norm as



Figure 9. The H
=

norm of the disturbance to various locations along the beam.
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a function of the beam position. It can be observed that the disturbance attenuation
is distributed more evenly along the beam this time. Figure 10 shows the Bode plot
of the designed H

=
controller.

A drawback of the above H
=

design is that there is no systematic method of
choosing the error output points along the beam and no indication as to how many
points will be needed. Of special interest is the problem of guaranteeing a level of
disturbance attenuation over the entire beam. However, this requires the solution
to an in"nite-dimensional H

=
control problem. In the next section, we set up this

problem and give a corresponding solution to it.

4. H
=

CONTROL OF A CLASS OF DISTRIBUTED PARAMETER SYSTEMS

Consider a system described by the following dynamics:

xR (t)"Ax(t)#B
1
w(t)#B

2
u(t),

z(t, j)"C
1
(j)x (t)#D

12
(j)u (t),

y(t)"C
2
x (t)#D

21
w(t) , (4.1)

where j3". In this system, x3Rn is the state, w3Rp is the disturbance input,
u3Rm is the control input, z3Rq is the error output and y3Rl is the measured
output. The state, disturbance inputs, measurements and control inputs are
"nite-dimensional. However, the error output is allowed to be in"nite-dimensional



Figure 10. Bode plot of the H
=

controller.
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since it is a function of parameter j. We also assume that K"[0, l]. The H
=

con-
trol problem for this system is de"ned as follows.

The H
=

control problem for distributed parameter systems. Design a controller

xR (t)"A
k
x (t)#B

k
y (t) ,

u(t)"C
k
x (t)#D

k
y(t) ,

such that the closed-loop system satis"es

inf
K())3;

sup
w())3L

2
[0,R)

P
=

0
PK

z(t, j)@z(t, j) djdt

P
=

0

w(t)@w(t) dt
(c2 , (4.2)

where ; is the set of all stabilizing controllers.
Condition (4.2) is an extension of the condition arising in the standard H

=
control problems to the case of distributed parameter systems. To understand the
motivations behind this de"nition, assume that in the beam problem considered in
the previous section, we increase the number of error points to be controlled along
the beam. As this number approaches in"nity, the H

=
norm objective approaches

the objective function (4.2). Condition (4.2) guarantees that a level of disturbance
attenuation less than c will be achieved over the entire set of K in an average sense.
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However, it does not guarantee that the H
=

norm of the transfer function from the
disturbance to each particular point inside the set K will be lower than c.

The solution to this problem will be given in terms of the following algebraic
Riccati equations:

(A!B
2
R~1P@)@X#X(A!B

2
R~1P@)!X(B

2
R~1B@

2
!c~2B

1
B@
1
)X

#Q!PR~1P@"0, (4.3)

(A!¸N~1C
2
) >#> (A!¸N~1C

2
)@!>(C

2
@N~1C

2
!c~2Q)>

#B
1
B@
1
!¸N~1¸@"0, (4.4)

where

R"P
l

0

D
12

(j)@D
12

(j) dj,

Q"P
l

0

C
1
(j)@C

1
(j) dj ,

P"P
l

0

C
1
(j)@D

12
(j) dj ,

¸"B
1
D@

21

N"D
21

D@
21

.

In the sequel we will need the following assumption.
Assumption. The following matrix is positive semi-de"nite:

C
Q P

P@ RD*0.

Theorem 4.1. Consider the distributed parameter system (4.1) and the related
H

=
control problem and assume that (A!B

2
R~1P@, (Q!PR~1P@)1@2) is detectable

and (A!¸N~1C
2
, (B

1
B
1
@!¸N~1¸)1/2) is stabilizable. ¹his problem has a solution

if and only if the Riccati equations (4.3) and (4.4) admit (minimal) non-negative-de,nite
solutions X and > such that

o(>X)(c2. (4.5)

In this case, a suitable controller is de,ned by

A
k
"A!B

2
R~1(B@

2
X#P@)#c~2B

1
B@
1
X

!(I!c~2>X)~1(>C@
2
#¸)N~1(C

2
#c~2D

21
B

1
@X) , (4.6)

B
k
"(I!c~2>X)~1(>C@

2
#¸)N~1 , (4.7)

C
k
"!R~1 (B@

2
X#P@) , (4.8)

D
k
"0. (4.9)
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Proof. Consider system (4.1) and the corresponding H
=

objective (4.2). Condition
(4.2) can be written as

inf
K())3;

sup
w())3L

2
[0,R)

:=
0

: l
0
z (t, j)@z(t, j)djdt

:=
0

w (t)@w(t) dt
(c.

This disturbance attenuation problem is equivalent to the di!erential game de"ned
by the system

xR (t)"Ax(t)#B
1
w(t)#B

2
u(t),

y(t)"C
2
x (t)#D

21
w(t) ,

and the cost function (see reference [10])

Jc"P
=

0
GC

x (t)

u (t)D
@
AP

l

0
C

C
1
(j)@C

1
(j) C

1
(j)@D

12
(j)

D
12

(j)@C
1
(j) D

12
(j)@D

12
(j)DdjB C

x (t)

u(t)D!c2Ew(t)E2H dt.

(4.10)

The necessary and su$cient condition for existence of a solution to this game
problem is existence of (minimal) solutions to Riccati equations (4.3) and (4.4) that
satisfy condition (4.5). Moreover, a H

=
controller is given by equations (4.6)}(4.8)

(see section 5.5 and Theorem 5.6 of reference [10]). K

Remark. The above problem is equivalent to a "nite-dimensional H
=

control
problem, where the underlying system is described by

xR (t)"Ax(t)#B
1
w(t)#B

2
u (t) ,

z(t)"Rx (t)#Pu(t) ,

y(t)"C
2
x(t)#D

21
w(t) (4.11)

Here, R and P are determined from

[R P]"C
Q P

P@ RD
1@2

.

This can be veri"ed by comparing the Riccati equations (4.3) and (4.4) with the
Riccati equations arising in the H

=
control for the "nite-dimensional system (4.11)

(see, e.g., Chapter 5 of reference [10]).
Now, let us give a frequency-domain interpretation of the induced norm de"ned

above. Consider a system ¹ de"ned by

xR (t)"Ax(t)#Bw(t),

z(t, j)"C(j)x (t) ,
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and de"ne

@TA2 *
" sup

w(>)|L2 *0,=+

:=
0

:K z (t, j)@z(t, j) djdt
:=
0

w(t)@w (t) dt
.

The following theorem gives a frequency domain interpretation of this norm in
terms of H

=
norm of a "nite-dimensional system.

Theorem 4.2. Suppose a stable linear system has a transfer matrix ¹(s, j) for
j3[0, l]. And let T denote the linear map it induces from the ,nite-dimensional
L

2
spaces of its inputs to its in,nite-dimensional outputs. Its induced linear operator

norm @TA satis,es

@TA"E¹I E
=

where ¹I (s) is a ,nite-dimensional system de,ned by

¹I (s)"M (sI!A)~1B

and

M"AP
l

0

C(j)@C (j) djB
1@2

.

Proof. The linear relationship between the disturbance and the in"nite-
dimensional output can be written as z"Tw. The Fourier transform of w and
z will be denoted by =( ju) and Z( ju, j). By Parseval's identity we have

P
=

0
P

l

0

z(t, j)@z(t, j) dj dt"
1
2n P

=

~=
P

l

0

=( ju)*¹( ju, j)*¹( ju, j)= ( ju) djdu

"

1
2n P

=

~=

=( ju)*AP
l

0

S( ju)*C(j)@C(j)S( ju)dj)B=( ju) du

"

1
2n P

=

~=

= ( ju)*¹I ( ju)*¹I ( ju)=( ju) du

)

1
2n

pmax (¹I ( ju))2P
=

~=

= ( ju)*=( ju) du

where S ( ju)"( juI!A)~1B.
Since E¹I E

=
"supu pmax (¹I ( ju)), it follows that

P
=

0
P

l

0

z(t, j)@z(t, j) dj dt6E¹I E2
=P

=

0

w(t)@w(t) dt.

Therefore,

@zA)E¹I E
=

EwE
2
.

Conversely, suppose c(E¹I E
=

. This means that for some u
0
, we have

pmax (¹I ( ju0
))'c. Therefore, by continuity, there exists g'0 such that



Figure 11. The closed-loop system with a pre-"lter.

BROADBAND DISTURBANCE ATTENUATION 823
pmax (¹I ( ju))*c for all u in [u
0
!g, u

0
#g] and [!u

0
!g, !u

0
#g]. Now,

consider a= ( ju) which is zero outside of these ranges of frequencies, and which
coincides with an eigenvalue corresponding to the largest eigenvalue of
¹I ( ju)*¹I ( ju) in these ranges. For the corresponding output z we then have

@zA2"P
=

0
P

l

0

z(t, j)@z(t, j) djdt

"

1
2n P

~u0`g

~u0~gP
l

0

= ( ju)*¹( ju, j)*¹( ju, j)= ( ju) djdu

#

1
2n P

u0`g

u0~gP
l

0

=( ju)*¹( ju, j)*¹( ju, j)= ( ju) djdu

"

1
2n P

~u0`g

~u0~g
= ( ju)*¹I (ju)*¹I ( ju)=( ju) du

#

1
2n P

u0`g

u0~g
= ( ju)*¹I ( ju)*¹I ( ju)=( ju) du

7

1
2n P

~u0`g

~u0~g
c2=( ju)*=( ju) du#

1
2n P

u0`g

u0~g
c2=( ju)*=(ju) du

"c2 EwE2
2
.

Hence, @TA*c, which proves the theorem. K

Now, let us consider the system in Figure 11 and let S
K

denote the linear
operator mapping w to z. That is, S

K
corresponds to a transfer function S

K
(s, j).
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Also, assume that ¹
K

has a state-space realization

xR (t)"Ax (t)#BwJ (t),

z(t)"C (j)x (t).

Also consider H(s) to be a given weighting function with state-space realization

xR
H

(t)"A
H

x
H

(t)#B
H
w(t) ,

wJ (t)"C
H

x
H

(t)

Theorem 4.3. Consider the system of Figure 11. ¹he following statements are
equivalent:

(i) @S
K
A(c.

(ii) @¹
K
( ju, j)A(c/EH( ju)E ∀u3R.

Here @¹
K
( ju, j)A"(:l

0
¹

K
(ju, j)*¹

K
( ju, j) dj)1/2.

Proof. Consider Figure 11; we can write

S
K
(s, j)"¹

K
(s, j)H(s).

Therefore, S
K
(s, j) will have the following state-space realization

x' 0 (t)"A] x' (t)#B] w(t),

z(t)"C] (j)x' (t) ,

where

A] *
" C

A BC
H

0 A
H
D , B] *

" C
0

B
H
D , C] (j) *

" [C(j) 0], x' *
"C

x

x
H
D .

Corresponding to this system is the "nite-dimensional system SI
K
(s) which has the

following state-space realization:

x'Q (t)"A] x' (t)#B] w(t) ,

zJ (t)"Mx' (t) ,
where

M"AP
l

0

C (j)@C(j) djB
1@2

.

It is easy to show that

SI
K
(s)"¹I (s)]H(s),
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where ¹I (s) has the following state-space realization:

xJ Q (t)"AxJ (t)#Bw(t),

zJ (t)"MxJ (t).

Now, if we assume that @S
K
A(c we have

@S
K
A(c

p
q

ESI
K
( ju)E

=
(c

p
q

E¹I
K
( ju)H( ju)E

=
(c

p
q

E¹I
K
( ju)E(

c
EH( ju)E

∀u3R

p
q

@¹
K
(ju, j)A(

c
EH( ju)E

∀u3R .

which proves the statement of the theorem. K

5. APPLICATIONS TO THE BEAM PROBLEM

The pinned}pinned beam system can be represented by the following state-space
system:

xR (t)"C
A 0

0 ADx (t)#C
B

0 Dw(t)#C
0

BD u(t),

z(t, j)"[C
1
(j) C

2
(j)] x (t),

y(t)"w(t) . (5.1)

However, as in the "nite-dimensional case, aH
=

controller design for this system
results in a controller with an in"nitely large gain since D

12
"0. To overcome this

di$culty, we add an extra noise output as follows:

xR (t)"C
A 0

0 ADx (t)#C
B

0 Dw (t)#C
0

BD u(t)

z(t, j)"C
C

1
(j) C

2
(j)

0 0 D x (t)#C
0

eD u(t),

y(t)"w(t) . (5.2)
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Here, e is a small design parameter chosen by the designer. Again, whilst
choosing e one has to be careful not to choose a very small value for e since the
smaller the value of e the higher the gain of the controller will be.

In this state-space realization, C
1
(j) and C

2
(j) are de"ned by

C
1
(j)"[/

1
(x

1
)/

1
(j) 0 2 /

n
(x

1
)/

n
(j) 0]

C
2
(j)"[/

1
(x

3
)/

1
(j) 0 2 /

n
(x

3
)/

n
(j) 0] .

Let us de"ne

AI "C
A 0

0 AD, BI
1
"C

B

0 D , BI
2
"C

0

BD .

Then, it can also be shown that R"e2l, P"0, N"1, ¸"BI
1

and

Q"C
Q

11
Q

12
Q@

12
Q

22
D ,

where

Q
11
"

/
1
(x

1
)2

oA
0 0 0

0 0 0 0

}

0 0
/
n
(x

1
)2

oA
0

0 0 0 0

,

Q
12
"

/
1
(x

1
) /

1
(x

3
)

oA
0 0 0

0 0 0 0

}

0 0
/

n
(x

1
)/

n
(x

3
)

oA
0

0 0 0 0

,

Q
22
"

/
1
(x

3
)2

oA
0 0 0

0 0 0 0

}

0 0
/

n
(x

3
)2

oA
0

0 0 0 0

.



Figure 12. Disturbance responses of the controlled beam.

BROADBAND DISTURBANCE ATTENUATION 827
With these de"nitions it is possible to show that the Riccati equation (4.3)
reduces to

AI @X#XAI !X(BI
2
R~1BI @

2
!c~2BI

1
BI @

1
) X#Q"0, (5.3)

and the Riccati equation (4.4) reduces to

AI >#>AI @!c~2>Q>"0.

Since AI is a stability matrix, the minimal solution to this Riccati equation is >"0.
Hence, the controller can be written as

xR
k
(t)"(AI !BI

2
R~1BI @

2
X)x

k
(t)#BI

1
y (t) ,

u(t)"!R~1BI
2
@Xx

k
(t) .

As explained above, we choose e"10~5 and we design the H
=

controller for
c"4)0052]10~5. Figure 12 shows the three-dimensional Bode magnitude plot
for disturbance response of the beam at various locations along the beam. Also,
Figure 13 shows the H

=
norm of the closed-loop system with the H

=
controller

designed for the distributed parameter system. Figure 14 shows the Bode plot of the
corresponding H

=
controller.

In practical noise and vibration control problems, the high-frequency noise or
vibrations can be reduced by passive methods such as damping. Therefore, the
main emphasis in active control techniques is on reducing the low-frequency
components of noise or vibrations.



Figure 13. TheH
=

norm of the disturbance to various locations along the beam with the controller
designed for the distributed parameter system.

Figure 14. Bode plot of The H
=

controller designed for the distributed parameter system.
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The procedure discussed in the previous section allows us to design a controller
with a new low-frequency closed-loop behaviour by means of including a weighting
function in our design. Indeed, if in Figure 11 the weighting function H(s) is
assumed to be a low-pass "lter with a suitable cuto! frequency, then Theorem 4.3
guarantees that the closed-loop frequency response of the beam is shaped by
H(s)~1.

If the transfer function ¹(s) in Figure 11 is as in equation (5.1), then S (s) may be
written as follows:

xR
s
(t)"

A 0 BC
H

0 A 0

0 0 A
H

x
s
(t)#

0

0

B
H

w (t)#

0

B

0

u(t) ,

z(t)"[C
1
(j) C

2
(j) 0] x

s
(t),

y(t)"[0 0 C
H
] x

s
(t) .

Note that in the above system, the matrices D
12

and D
21

are zero. Therefore, to
avoid consequent problems which will arise while designing a H

=
controller for

such a system, we consider the following "ctitious system which approximates our
original system:

xR
s
(t)"

A 0 BC
H

0 A 0

0 0 A
H

x
s
(t)#

0

0

B
H

w(t)#

0

B

0

u(t) ,

z(t, j)"C
C

1
(j) C

2
(j) 0

0 0 0 D x
s
(t)#C

0

e
1
D u (t) ,

y(t, j)"[0 0 C
H
] x

s
(t)#e

2
w(t) .

We designed a controller for this system with the assumption that e
1
"10~5,

e
2
"10~3 and

H(s)"
106

s2#103s#106
.

The H
=

controller is designed for a disturbance attenuation level of c"4.95]
10~5. The 3D disturbance response and a plot of the H

=
norm versus length of the

beam can be observed in Figures 15 and 16. Figure 17 shows the Bode plot of the
designed controller.

6 CONCLUSIONS

In this paper, we presented a method of reducing vibrations of a #exible
structure. We allowed the disturbance to have a wide-band nature and showed that
the problem could be reduced to a spatial H

=
control problem. Moreover, we



Figure 15. Disturbance responses of the controlled beam with a shaping "lter included in the design.

Figure 16. TheH
=

norm of the disturbance to various locations along the beam with the controller
designed for the distributed parameter system with a shaping "lter.
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Figure 17. Bode plot of the H
=

controller designed for the distributed parameter system with
a shaping "lter.
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showed that this problem is reducible to an standard H
=

control problem that can
be solved using standard techniques. It was shown that a spatial H

=
controller

design could result in a better vibration reduction in a global sense.
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